スイッチング電源(スイッチングでんげん、英語:switched-mode power supply、略称:SMPS)あるいはスイッチング方式直流安定化電源とは、スイッチングトランジスタなどを用い、フィードバック回路によって半導体スイッチ素子のオン・オフ時間比率(デューティ比)をコントロールする事により出力を安定化させる電源装置である。スイッチング式直流安定化電源とも呼ぶ。商用電源の交流を直流電源に変換する電力変換装置などとして広く利用されており、小型、軽量で、電力変換効率も高い。一方で、高速にスイッチングを行う事からEMIが発生しやすい。
トランスの一次側巻線の一端には、電源のプラス側ノードに接続された第一のハイサイドスイッチとマイナス側ノードに接続された第一のローサイドスイッチを接続する。トランスの一次側巻線の他端には、電源のプラス側ノードに接続された第二のハイサイドスイッチとマイナス側ノードに接続された第二のローサイドスイッチを接続する。第一のハイサイドスイッチと第二のローサイドスイッチを同時にオンすると共に、第一のローサイドスイッチと第二のハイサイドスイッチを同時にオフする。第一のハイサイドスイッチと第二のローサイドスイッチを同時にオフすると共に、第一のローサイドスイッチと第二のハイサイドスイッチを同時にオンする。3, 4を繰り返すことで、トランスのコアには交流磁界が発生する。大電力を効率よく伝達することが可能であるため、かつては大電力用途に限定されていたようだが、近年は計算機が低電圧大電流を要求するようになり、POL(Point Of Load:負荷の直近に電源を配置する方式)の電力供給手段として多用されている。
"It is also referred to as ringing choke converter (RCC) since the regenerative signal for oscillation comes from ringing of transformer choke."「発振用の再生信号がトランスチョークのリンギングに由来するため、リンギングチョークコンバータ(RCC)とも呼ばれる。」
フライバック方式の一種であるRCCは、(磁気飽和を防ぐため)コアにギャップを設けたフライバックトランス電源ノードに接続される、トランスの一次巻線(図中"primary")一次巻線のスイッチングを行うバイポーラトランジスタのトランジスタスイッチ(図中"Tr")トランジスタスイッチにベース電流を供給するベース巻線(図中"base")トランジスタスイッチのオフ時に電力を出力する二次巻線(図中"secondary")二次巻線に接続される整流ダイオード(図中"D1")トランジスタスイッチのベースに起動電流を与える抵抗(図中"R1")トランジスタスイッチのベースに起動電流が流れる際、ベースエミッタ間の絶縁を確保するためのダイオード(図中"D2")。ダイオードに代えて、コンデンサでもよい。コンデンサと抵抗の直列接続を多く見かける。が、必要最小限の構成である。電源ノードから抵抗R1を介してトランジスタスイッチTrのベースに僅かな起動電流が供給される。トランジスタスイッチTrがオンになると、電源ノードから一次巻線primaryを通じてトランジスタスイッチTrのコレクタエミッタ間に電流が流れる。すると、一次巻線primaryから磁束が生じる。一次巻線primaryの磁束が変化すると、ベース巻線baseが励磁される。ベース巻線baseが励磁されると、トランジスタスイッチTrのベース電流が増加する。そして、トランジスタスイッチTrが完全にオン状態になり、一次巻線primaryの電流が増加する。トランジスタスイッチTrが完全にオン状態になることで、一次巻線primaryには電源ノードにほぼ等しい電圧が印加される。しかし、一次巻線primaryはコイルなので、一次巻線primaryの電流は時間経過と共に線形的に増加する。一次巻線primaryの電流はトランジスタスイッチTrのコレクタ電流と等しく、コレクタ電流はトランジスタスイッチTrの直流電流増幅率hFEとベース電流によって制約される。すなわち、一次巻線primaryの電流は無限に増加せず、ベース電流が不足することによって一次巻線primaryの電流が増加しなくなる時点が生じる。一次巻線primaryの電流が増加しなくなる、ということは、トランジスタスイッチTrのオン状態、すなわち飽和状態が維持できなくなることを意味する。したがって、トランジスタスイッチTrのコレクタエミッタ間の抵抗値が増大し、相対的に一次巻線primaryの端子間電圧が減少する。一次巻線primaryの端子間電圧が減少すると、ベース巻線baseの励磁がなくなる。すると、ベース電流がなくなり、トランジスタスイッチTrはオフする。トランジスタスイッチTrがオフすると、一次巻線primary、二次巻線secondary及びベース巻線baseには逆起電力が発生する。この逆起電力が二次巻線secondaryへ電流となって出力される。この時、一次巻線primary及びベース巻線baseの巻線方向とは逆方向に電圧が現れる。ベース巻線baseにも二次巻線secondaryと同様、逆方向の電圧が励起されるため、二次巻線secondaryから出力される電流がなくなるまで、トランジスタスイッチTrのオフ状態(ベースエミッタ間電圧がオン電圧よりも低い状態)は維持される。やがて二次巻線secondaryの電流が少なくなると、電源ノードから抵抗R1を介してトランジスタスイッチTrのベースに僅かな起動電流が供給される。すなわち、上記1)に戻る。RCCは、トランジスタスイッチTrのオンオフの1周期に、一次巻線primaryから二次巻線secondaryへ引き渡されるエネルギーが一定である。このため、負荷が軽ければ1周期は長くなり、負荷が重くなれば1周期が短くなる。なお、負荷の変動に追従して出力電圧を安定化させる等、RCCに不足する機能は、フォトカプラ等を用いるフィードバック制御回路を追加する必要がある。そして、そのような回路を追加すると回路規模は大きくなり、複雑化する。一次巻線primaryから二次巻線secondaryへ引き渡されるエネルギーが一定であることから、RCC のスイッチングは、一次巻線がオン状態の時間が一定で、一次巻線がオフ状態の時間が、負荷の変動によって変動する。したがって、RCC のスイッチのオン/オフ状態の波形は、PFM (パルス周波数変調) である。一次巻線primaryによって蓄積された磁力が二次巻線secondaryを通じて負荷Zへ完全に出力されない限り、抵抗R1からトランジスタスイッチTrのベースに起動電流は流れない。したがって、RCCは本質的に偏磁の問題が生じ得ない。ベース巻線baseからトランジスタスイッチTrへ供給される電流が、一次巻線primaryの励磁に起因して、急激に増加した後、徐々に減っていく有様が、"transformer choke"という言葉で表現されている。RCCの歴史は古く、少なくとも日本では昭和36年頃にはその技術思想が公知になっていたものと推察される。設計が複雑かつ困難、負荷変動によってスイッチング周波数が変動する、大電力には不向き等、欠点は専用ICを用いるフライバックコンバータより多いものの、最小限の構成であれば極めて簡素な部品構成で実装が可能であり、低コストで実装できる。このため、フィーチャーフォンの充電器や、ビデオレコーダやパソコン等の待機用電源回路として多用されていた。特に、負荷が軽く、且つ、負荷変動がないか或は負荷変動が極めて少ない場合では、コレクタエミッタ間耐圧(VCEO)が高耐圧のスイッチングトランジスタを1個、そしてフライバックトランスと数個の受動素子を用意すれば、商用交流電源との絶縁を確保し、負荷に必要な電力を供給できる、という点において、RCC は安価かつ手軽に構築可能な電源回路である。2021年現在では、殆どの携帯電話がフィーチャーフォンより多くの電流を要求するスマートフォンにシフトしており、RCC では電力供給能力が不足する。このため、携帯電話の充電器用途では、先に説明した PSR 採用ICに殆ど移行している。