ばね(バネ、発条、弾機)とは、力が加わると変形して力を取り除くと元に戻るという、物体の弾性という性質を利用する機械要素である。広義には、弾性の利用を主な目的とするものの総称ともいえる。英語名は spring で、日本語でもスプリングという名でよく呼ばれる。発条(はつじょう)ともいう。ばねの形状や材質は様々で、日用品から車両、電気電子機器、構造物に至るまで、非常に多岐にわたって使用される。ばねの種類の中ではコイルばねがよく知られ、特に圧縮コイルばねが広く用いられている。他には、板ばね、渦巻ばね、トーションバー、皿ばねなどがある。ばねの材料には金属、特に鉄鋼が広く用いられているが、用途に応じてゴム、プラスチック、セラミックスといった非金属材料も用いられている。空気を復元力を生み出す材料とする空気ばねなどもある。ばねの荷重とたわみの関係も、荷重とたわみが比例する線形のものから、比例しない非線形のものまで存在する。ばねばかりのように荷重を変形量で示させたり、自動車の懸架装置のように振動や衝撃を緩和したり、ぜんまい仕掛けのおもちゃのように弾性エネルギーの貯蔵と放出を行わせたりなど、色々な用途のためにばねが用いられる。人類におけるばねの使用の歴史は太古に遡り、原始時代から利用されてきた弓はばねそのものである。カタパルト、クロスボウ、機械式時計、馬車の懸架装置といった様々な機械や器具で利用され、ばねは発展を遂げていった。1678年にはイギリスのロバート・フックが、ばねにおいて非常に重要な物理法則となるフックの法則を発表した。産業革命後には、他の工業と同じくばねも大きな発展を遂げ、理論的な設計手法も確立していった。今日では、ばねの製造は機械化された大量生産が主だが、一方で特殊なばねに対しては手作業による製造も行われる。現在のばねへの要求は多様化し、その実現に高度な技術も求められるようになっている。
ばねは、力を加えられると変形し、力を取り除くと元の形に戻るという性質を持っている。このように力が加わって変形しても元に戻ろうとする性質を持つことが、ばねの基本的性質であり、必要条件である。元の形に戻ろうとする力は「復元力」と呼ばれ、復元力の存在がばねの主要な特性の1つ目に挙げられる。復元力は物質の「弾性」という性質に起因し、力を取り除くと元の形に戻る変形は「弾性変形」と呼ばれる。しかし、力(正確には応力)が材料の限界を超えて加わると、力を除いても変形(正確にはひずみ)が残るようになる。この性質は「塑性」と呼ばれ、塑性という性質によって元に戻らない変形のことを「塑性変形」と呼ぶ。変形が弾性変形に留まる最大の応力は「弾性限度」と呼ばれる。ばねは元に戻ることを前提として使われるものであるため、塑性変形が起こることは好ましくなく、一般にばねに加わる力が弾性限度を超えない範囲で使用される。ばねの変形のことや変形量のことを「たわみ」と呼ぶ。たわみの物理単位には、変位(長さの変化)と回転角(ねじり角や曲げ角の変化)の2種類がある。長さが変化することを利用する圧縮コイルばねでは、たわみの単位は変位で表される。棒のねじり角度が変化することを利用するトーションバーでは、たわみの単位は回転角(ねじり角)である。たわみの物理量に対応して、たわみを起こす負荷にもいくつかの種類が考えられる。変位であれば荷重(純粋な力)であり、ねじり角であればねじりモーメントが考えられる。実際のばねでは、変位や回転変形が組み合わさった複雑なたわみを起こすものもある。このような荷重とたわみがある一定関係を持っていることが、ばねが持つ基本的性質や機能の一つともいえる。ばねが示す荷重とたわみの関係のことを「ばね特性」「荷重-たわみ特性」「荷重特性」などと呼ぶ。最もよく利用されるばねのばね特性は、線形であることが多い。線形とはたわみが荷重に比例して増減するということで、ばねに 10 kg の重りを吊るすとばねが 1 cm 伸び、20 kg の重りを吊るすと 2 cm 伸びるという具合である。この関係は「フックの法則」としても知られる。線形特性であるばねでは荷重とたわみの関係は以下のような式で表される。
ここで、P が荷重(力)で、δ がたわみ(変位)である。k は P と δ の比例定数で「ばね定数」と呼ばれ、単位は[力]/[長さ]である。例えば 10 kgf/cm というばね定数は、たわみ 1 cm を起こすのに 10 kg の重りを吊るす必要があるという意味である。実際の製品でいえば、大型自動車や鉄道車両の懸架装置用ばねでは大きなばね定数が必要となり、それと比較してベッドやソファーのばねでは小さなばね定数が必要となる。負荷がねじりモーメント T で、たわみがねじり角 θ のときは、
という式になる。この場合の k の単位は[モーメント]/[角度]であり、k を「回転ばね定数」などと呼んで通常のばね定数と区別する場合もある。荷重とたわみが比例しないばねも存在し、そのような関係を非線形と呼ぶ。非線形特性のばねでは、例えば、ばねに 10 kg の重りを吊るすと 1 cm 伸びるが、20 kg の重りを吊るしても 1.2 cm しか伸びないという具合である。さらに、荷重を加えるときと取り除くときで荷重とたわみの関係が異なり、荷重-たわみ曲線がヒステリシスループを描くばねもある。皿ばねや圧縮コイルばねの内の特殊なものが、非線形特性のばねの例として挙げられる。
エネルギーの蓄積と放出
ばねが変形するとき、弾性エネルギーという形でエネルギーがばねに蓄えられる。蓄えられたエネルギーを放出させれば、ばねに機械的な仕事をさせることができる。この「エネルギーの蓄積と放出」という働きが、ばねの主要な特性の2つ目として挙げられる。例えば、弓によって矢を放つのは、このエネルギーの蓄積と放出を利用している。手で弦を引くことで弾性エネルギーを蓄え、手を放すことで弾性エネルギーを矢を飛ばす力に変える。ぜんまい時計では、ぜんまいに蓄えられたエネルギーを放出させながら時計が動いている。弓と比較すると、ぜんまい時計の場合は弾性エネルギーを徐々に放出させながら利用している。自動車の懸架装置用ばねの場合は、路面から伝わる衝撃をばねが受け、衝撃力をばねの弾性エネルギーに変化させて緩衝している。ばねに蓄えられる弾性エネルギーは、その弾性変形を起こす荷重によってなされた仕事に等しい。荷重-たわみ線図では、曲線と横軸で囲まれた面積が弾性エネルギーに相当する。線形特性に限定せずに、荷重 P がたわみ δ の一般的な関数であるときは、 P(δ) を積分して、弾性エネルギー U は以下のようになる。
線形特性のばねであれば、囲まれる面積は三角形となるので
が弾性エネルギーである。ばねが受ける荷重 P が同じなら、ばね定数 k が小さいほど吸収エネルギー U が大きくできる。鉄道車両の連結器や緩衝装置のようにばねを衝突を緩和するために使用するときは、この吸収エネルギーが大きいほど有利となる。荷重-たわみ曲線がヒステリシスループを描く非線形特性ばねの場合では、ループで囲まれる部分の面積分のエネルギーが摩擦などで消費される。このヒステリシスによる弾性エネルギーの消費は減衰として働き、衝撃緩和の視点からは、ループで囲まれる面積が大きいほど有利となる。
ばねを設計するとき、荷重と変形の関係や発生する応力を計算する方法には、材料力学の古典的な理論式を使う方法と数値解析の有限要素法 (FEM) を使う方法がある。古典的理論では代数式の形で計算式が与えられていることが多く、電卓などでも容易に計算できる。また、形状をどれだけ変えたら特性にどれだけ影響するかなど、要因と結果の関係が明白に理解できる。一方で、古典的理論では計算式を導出するためにいくつかの仮定を置いており、それらの仮定に近い範囲の使用のみで式の精度が期待できる。例えば、一般的な圧縮コイルばねのばね定数 k は、形状と材料特性の数値を決めれば次の基本式で計算できる。
ここで、G が材料特性の値、 d, Na, D が各寸法の値である。しかしこの式は、荷重はコイル中心一直線上にかかる、ピッチ角(螺旋の傾き)の影響は小さく無視できる、ねじりモーメントのみを考慮する、という3つの仮定を前提にしており、適用範囲に限界がある。実際の設計では、これらの仮定を超える範囲で使用することも必要となる。一方のFEMでは、ばねの形状を要素と呼ばれる小領域で分割したモデルをコンピュータ上に作り、解を出す。適用可能なばね形状の制約が少なく、代数式形での計算式が確立していないような特殊な形状のばねに対しても計算可能である。実際の製品により近い計算が可能となる。ただし、形状を変えたらその度にモデルを変更する必要があり、最適な設計に収束させるのに作業の繰り返しが必要となる。古典的理論式と比較すると時間やコストがかかることが多い。設計においては、古典的理論式とFEMの長所と短所を勘定し、それぞれを使い分けるのが一般的である。
国際規格であるISOの他、各国の工業規格(ASTM、BS、DIN、JIS、JASO、NF、SAEなど)で、ばねの設計や製造に関する規格が制定されている。内容は、ばねに関する用語、各種のばね製品、試験方法、ばね用材料、製図方法などに関するものである。例えば日本産業規格における皿ばねの規格「JIS B 2706:2013」では、材料、分類、設計計算式、寸法許容差、試験方法などが規定されている。ISOでは、2017年現在12カ国が参加する技術委員会「ISO/TC 227」が設置され、金属ばねを所掌範囲として規格開発が行われている。
身の回りの日用品の中にも様々なばねが存在する。文房具では、紙や書類を挟むためのクリップもばねの一種といえる。線を折り曲げて成形されたゼムクリップは、線細工ばねの一種である。紙や書類を綴じるためのステープラーには、板ばねとコイルばねが使われている。針を前に押し出す機構にはコイルばねが使われ、針を押し出す薄板は板ばねになっている。ノック機構を持つボールペンでは、ペン先の出し入れにコイルばねを利用している。ボールペンの中には、ペン先のボールを 1 mm 程度の小さなばねで支える機構を持つものもある。衣服を干すための洗濯ばさみでもばねが使われている。洗濯ばさみには、ねじりコイルばねを利用するものと、輪っかの形のばねを利用するものがある。重さを量る秤にもばねを利用する種類がある。ばねばかりは引張コイルばねを利用するもので、計量の仕組みはフックの法則の見本といえる。機械式時計では2種類の渦巻ばねが用いられている。1つは接触形渦巻ばねのぜんまいで、時計の針を進める動力を生み出している。もう1つは非接触形渦巻ばねのひげぜんまいと呼ばれる部品で、時計の調速脱進機で使われる。てんぷという部品に取り付けられたひげぜんまいに往復運動をさせることで、正しい時刻を刻むように針を動かしている。おもちゃもばねの様々な性質を利用している。びっくり箱はフタを開けると人形などがばねの復元力で飛び出る古典的なおもちゃである。オルゴールは、渦巻ばねを動力として音を出している。エネルギーを弾性エネルギーとして蓄積して徐々に放出させる、ばねの使い方の例である。ミニカーのチョロQも渦巻ばねが走りの動力原である。スリンキーという変わった動きをするばね状のおもちゃもある。
機械式弓はその後も発展し、鋼製ばねを使用することで強力な威力を持つようになったクロスボウは、1139年の第2ラテラン公会議でキリスト教徒に対する使用禁止が定められるに至った。一方で、西暦400年頃から1400年頃にかけての中世ヨーロッパでは、ばねや機械に関する進歩はあまり知られていない。11世紀頃になると、鍛冶屋などの多くのギルドが誕生したが、ばね屋のギルドの記録は残っていない。しかしこれらの間もばねの利用は続いており、鍛冶、金細工、銀細工、鎧、錠前や時計などの製造者たちによって個別にばねが作られていたと推測される。中世ギルドの中でも、時計産業は、ばねの利用と製作の発展に古くから重要な寄与してきた存在であった。本格的な機械式の時計は、1300年頃、ヨーロッパで最初に作られたといわれる。この時計は錘の落下を動力したもので、錘を落とすための高さが必要で、大型なものであった。しかし、渦巻ばねのぜんまいが発明され、これを時計の動力として用いることによって、携帯可能な大きさの時計が初めて実現した。ぜんまいの発明者は不明だが、14世紀中には存在していた。フィリッポ・ブルネレスキの伝記や肖像画に、ぜんまいを使った時計の記述が残っている。当時の携帯可能な時計の中でも、ドイツのニュルンベルクで作られたぜんまい式携帯時計は「ニュルンベルクの卵」という名称でヨーロッパで人気を博した。ニュルンベルクの時計技師であったピーター・ヘンラインがぜんまいあるいはニュルンベルクの卵を発明したという説もあるが、現在では否定されている。ルネサンス期には、イタリアのレオナルド・ダ・ヴィンチも、ばねを利用した機械や機械要素としてのばねのスケッチや説明を多くの手稿の中に書き残した。これらの内で実際に当時実現されたのものは少ないと考えられているが、これらの時代に先立つアイデアはダ・ヴィンチの才能の現れの一つとも評される。一例として、自動車の祖先ともいえる、弓形のばねを動力として自走する三輪車のスケッチをアトランティコ手稿の中に残している。この自走する三輪車は現代的な視点から推測すると実用に耐えないと考えられているが、一方でダ・ヴィンチの独創性としても評価される。16世紀あるいは17世紀以降のヨーロッパでは、交通手段として本格的に馬車が活用されるようになる。この背景となった技術の一つとして、馬車の懸架装置用に鋼製のばねが使用されるようになった点がある。それまでの馬車の懸架装置は、座席を革製のひもで吊り下げるものであった。しかし、鋼製ばねによる懸架装置が利用されるようになったことで馬車の乗り心地は改善され、馬車は荷物運搬のみならず人の移動にも利用されるようになった。記録としては1669年、イギリスの海軍史家サミュエル・ピープスが、自分の馬車に鋼製のばねを実験的に使ったことを書き残している。この記述は、懸架装置に用いられた板ばねの記録の中で最古のものでもある。1678年には、ばねにおいて非常に重要な物理法則である「フックの法則」がイギリスのロバート・フックから発表された。当時、ジョン・カトラーという人物が資金を提供して創設された「カトラー講義」の授業をフックは行っていた。この講義の内容のいくつかは出版されて、『復元力についての講義』(Lectures de Potentia Restitutiva, Or of Spring) という著作をフックは1678年に出版し、この中でフックの法則が論じられた。『復元力についての講義』出版の2年前に、フックは別の事柄に関する著書を出しており、この著書の終わり近くでフックの法則を意味するアナグラムを公表していた。そして、『復元力についての講義』の中で、フックはそのアナグラムの解答を発表した。フックは『復元力についての講義』の最初のページで以下のように述べている。アナグラムの解答である Vt tensio sic vis はラテン語の文となっており、科学技術史学者の中島秀人はこれを「伸びは力のごとく」と訳している。今日では、フックの法則はばねの最も基本的な動きを表し、さらには、ばねに限らずに弾性を持つ物体全てが関連する重要な法則となっている。
近代から現代まで
18世紀になるとイギリスを最初として産業革命が起き、ここから20世紀後半までにかけて工業化が世界に広がっていった。他の工業と同じく、産業革命の中でばねも大きな発展を遂げた。コイルばねを巻くための生産機械であるコイリングマシンも産業革命の中で生まれた。イギリスの発明家ジョセフ・ブラマーの錠前工場の中で、様々なピッチのコイルばねを造れる製作機が使われていた。このばね製作機は、ブラマーの工場で当時働いており、後にねじ切り旋盤の発明で知られるヘンリー・モーズリーの発明にも影響を与えたと考えられている。コイルばねの製造は第一次世界大戦前まではコイルの芯となる棒に巻き付ける手法で行われていたが、大量生産の時代が来るとより早く作れるコイリングマシンが求められるようになった。アメリカでは様々なばね製作方法の特許が生まれた。1918年にはスリーパー&ハートレー社の創業者フランク・スリーパーがユニバーサルコイリングマシンの特許を出し、これが旋盤式コイリングマシンに取って代わっていった。工作機械全般が数値制御化(NC化)される中で、ばね製造機もNC化が進んだ。1969年にはアメリカのトーリン社がNC式のばね製造機を世界で初めて開発した。2012年現在、ばねの製造は機械化による大量生産品が主を占めている。一方で、大量生産品では対応できない特殊なばねに対しては、手作業による製造もまた行われている。最初は蒸気機関を動力として生まれた自動車は、内燃機関のガソリンエンジンが開発されて動力として実用化されると、様々な国で自動車が実用に供されていった。自動車では非常に多くの種類と数のばねが使用されているため、「自動車の発達の歴史は、そのままばねの発達の歴史」ともいわれるほど自動車とばねの関係は深い。ドイツのゴットリープ・ダイムラーが開発した1883年の4サイクルガソリンエンジンでは、弁ばねが既に使用されていた。懸架装置には、板ばねを使用した方式が馬車の時代から引き続き用いられ、1900年初期頃まで板ばねが主として用いられていた。その後1930年頃から、コイルばねやトーションバーといった板ばね以外の種類のばねも鋼材料の進歩にともなって自動車懸架装置用に使われるようになっていった。2016年現在では、一般的な乗用車用にはコイルばねの使用が主流となり、板ばねはトラックやバスなどの大きな荷重を受ける車種で利用されている。産業革命以前は経験的に試行錯誤で作られていたばねも、1830年頃以降から徐々に理論的な設計がなされるようになっていった。18世紀から20世紀にかけて、ばねの解析の下地となる弾性力学の基礎概念や基礎理論、代表的な金属ばねについての個々の理論が確立されていった。1949年にはアメリカのウェスティングハウス・エレクトリック社の技師 A. M. ワールが著書 Mechanical Springs(機械ばね)を、1960年にはドイツのジークフリート・グロスが著書 Berechnung und Gestaltung von Metallfedern(金属ばねの設計と計算)を出版し、各種ばねの設計の基礎がまとめられた。ワールは、コイルばねの応力解析における「ワールの応力修正係数」として今日でも名をとどめている。20世紀後半にはコンピュータが誕生し、数値解析手法の一つである有限要素法 (FEM) が実用化されるに至った。FEMはばねの解析にも利用され、限られた範囲でしか使用できない理論式に縛られずに、様々な形状や荷重状況のばねを解析できるようになった。例えば、軽量化が要求される自動車懸架装置用ばねなどにおいて、古典的な理論式では解明できなかった点をFEMは明らかにしている。一方で、古典的な理論式は未だに有用であり、FEMを補完するものとして価値を持ち続けている。ばねの材料は金属がほとんどだったが、金属材料では実現できない特性を得るために近年では非金属材料についても材料として利用されるようになってきた。プラスチック製のばねや空気ばねは、それぞれの長所を生かして実用に至っている。セラミックス製のばねは、1000℃以上の高温下でも使用可能なばねとして期待されている。鋼製ばねも、自動車の軽量化要求によって更なる高強度のばね用鋼材開発が進められている。今日のばねは、省エネルギー、軽量化、安全性、精密化、リサイクルなど要求が多様化し、高度な技術が求められるようになっている。
※文献内の複数個所に亘って参照したものを示す。日本ばね学会(編)、2008、『ばね』第4版、丸善出版 ISBN 978-4-621-07965-2「ばねの歴史」編纂ワーキンググループ(編)、2012、『ばねの歴史』、日本ばね工業会ばね技術研究会(編)、1998、『ばねの種類と用途例』初版、日刊工業新聞社〈ばね技術シリーズ〉 ISBN 4-526-04232-3ばね技術研究会(編)、2000、『ばね用材料とその特性』初版、日刊工業新聞社〈ばね技術シリーズ〉 ISBN 4-526-04483-0ばね技術研究会(編)、2001、『ばねの設計と製造・信頼性』初版、日刊工業新聞社〈ばね技術シリーズ〉 ISBN 4-526-04705-8ニッパツ・日本発条株式会社(編)、1998、『機械要素活用マニュアル・ばね』初版、工業調査会 ISBN 4-7693-2116-3KYB株式会社(編)、2013、『自動車のサスペンション―構造・理論・評価』初版、グランプリ出版 ISBN 978-4-87687-330-2日本機械学会(編)、2005、『機械工学便覧 デザイン編 β4 機械要素・トライボロジー』初版、丸善出版 ISBN 4-88898-129-9日本機械学会(編)、2007、『機械工学辞典』第2版、丸善出版 ISBN 978-4-88898-083-8日本機械学会(編)、2010、『新・機械技術史』初版、丸善出版 ISBN 978-4-88898-196-5新星出版社編集部(編)、2009、『徹底図解 自動車のしくみ』、新星出版社 ISBN 978-4-405-10649-9こどもくらぶ(編)、2012、『工場の底力(2)―縁の下の力持ち』、かもがわ出版 ISBN 978-4-7803-0556-2深代 千之(監修)、2014、『オールカラー 骨・関節・筋肉の構造と動作のしくみ』初版、ナツメ社 ISBN 978-4-8163-5598-1JIS B 0103:2015「ばね用語」(日本産業標準調査会、経済産業省)渡辺 彬・武田 定彦、1989、『ばねの基礎(訂正版)』訂正1版、パワー社〈基礎シリーズ(5)〉 ISBN 4-8277-1245-X蒲 久男、2008、『絵とき「ばね」基礎のきそ』初版、日刊工業新聞社 ISBN 978-4-526-06112-7門田 和雄、2006、『絵とき「機械要素」基礎のきそ』初版、日刊工業新聞社 ISBN 978-4-526-05655-0門田 和雄、2016、『トコトンやさしいばねの本』初版、日刊工業新聞社〈今日からモノ知りシリーズ〉 ISBN 978-4-526-07632-9小玉 正雄、1985、『ばねのおはなし』第1版、日本規格協会〈おはなし科学・技術シリーズ〉 ISBN 4-542-90109-2山田 学、2010、『めっちゃ、メカメカ! 2 ばねの設計と計算の作法―はじめてのコイルばね設計』初版、日刊工業新聞社 ISBN 978-4-526-06578-1村上 敬宜、1994、『材料力学』第1版、森北出版〈機械工学入門講座1〉 ISBN 4-627-60510-2末岡 淳男・金光 陽一・近藤 孝広、2002、『機械振動学』初版、朝倉書店〈基礎機械工学シリーズ 6〉 ISBN 4-254-23706-5下郷 太郎・田島 清灝、2002、『振動学』初版、コロナ社〈機械系 大学講義シリーズ11〉 ISBN 4-339-04045-2織田 一郎、2008、『時と時計の雑学事典』初版、ワールドフォトプレス ISBN 978-4-8465-2708-2中島 秀人、1996、『ロバート・フック―ニュートンに消された男』、朝日新聞社〈朝日選書565〉 ISBN 4-02-259665-1斉藤 大樹、2008、『耐震・免震・制震の話―改正建築基準法対応』第2版、日刊工業社〈SCIENCE AND TECHNOLOGY〉 ISBN 978-4-526-06051-9デビッド・マコーレイ、歌崎 秀史(訳)、2011、『道具と機械の本―てこからコンピューターまで』新装版、岩波書店 ISBN 978-4-00-009889-2J. G. ランデルズ、宮城 孝仁(訳)、1995、『古代のエンジニアリング―ギリシャ・ローマ時代の技術と文化』初版、地人書館 ISBN 4-8052-0500-8Erik Oberg, Franklin Jones, Holbrook Horton, Henry Ryffel, Christopher McCauley (2012). Machinery's Handbook (29 ed.). Industrial Press. ISBN 978-0-8311-2900-2Merhyle F. Spotts, Terry E. Shoup, Lee E. Hornberger (2004). Design of Machine Elements (8 ed.). New Jersey: Pearson. ISBN 0-13-048989-1. https://www.pearson.com/en-us/subject-catalog/p/Spotts-Design-of-Machine-Elements-8th-Edition/P200000006702/9780130489890Cheryl Chonajcki (July 2008). “A History of Springs”. SPRINGS (Spring Manufacturers Institute) 47 (3): 26–30. オリジナルの2014年8月30日時点におけるアーカイブ。. https://web.archive.org/web/20140830111704/http://www.smihq.org/public/publications/springsmag_archive/Springs_2008_Vol_47_No3/index.html.